

### Key Establishment Schemes Workshop Document

October 2001



#### **Outline**

- ♦ Introduction
- ♦ Scope & Purpose
- ◆ Definitions
- ♦ Key Establishment Algorithm Classes
- ♦ Security Attributes
- ♦ Cryptographic Elements
- ♦ Key Agreement Schemes
- ♦ Key Transport
- ♦ Keys Derived from a "Master Key"
- ♦ Key Recovery



#### Introduction

- Many cryptographic algorithms (e.g., AES, HMAC) require the establishment of *shared* keying material in advance.
- ◆ Manual distribution of keying material is inefficient and complex.
- ♦ Seek automated key establishment schemes.



### **Scope & Purpose**

- ◆ Development of a Federal key agreement schemes document based on
  - ANSI X9.42 Agreement of Symmetric Keys using Discrete Logarithm Cryptography
  - ANSI X9.44 Key Agreement and Key Transport using Factoring-Based Cryptography (To be provided)
  - ANSI X9.63 Key Agreement and Key
     Transport using Elliptic Curve Cryptography



#### **Definitions**

- ◆ Approved
  - FIPS approved or NIST Recommended
- Keying Material
  - The data (e.g., keys and IVs) necessary to establish and maintain cryptographic keying relationships.
- ♦ Shared Keying Material
  - The keying material that is derived by applying a key derivation function to the shared secret.
- ♦ Shared Secret
  - A secret value computed using a prescribed algorithm and combination of keys belonging to the participants in the key establishment scheme.



### **General Symbols**

| Н    | An approved hash function                                                                                                         |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------|--|
|      | An optional bit string that may be used during key confirmation and that is sent between the parties establishing keying material |  |
| U    | One entity of a key establishment process, or the bit string denoting the identity of that entity                                 |  |
| V    | The other entity of a key establishment process, or the bit string denoting the identity of that entity                           |  |
| X  Y | Concatenation of two strings <i>X</i> and <i>Y</i>                                                                                |  |



### **ANSI X9.42 Symbols**

| ε.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------|
| 100000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | p, q, g                   | The domain parameters                                                                  |
| December of the last of the la | $\operatorname{mod} p$    | The reduction modulo p on an integer value                                             |
| DODGET AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $r_{U,}$ $\mathbf{r}_{V}$ | Party U or Party V's ephemeral private key                                             |
| NEW YORK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $t_{U,} t_{V}$            | Party U or Party V's ephemeral public key                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $x_{U,} x_{V}$            | Party U or Party V's static private key                                                |
| l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $y_{U,}y_{V}$             | Party U or Party V's static public key                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z                         | A shared secret that is used to derive keying material using a key derivation function |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $Z_e$                     | An ephemeral shared secret that is computed using the Diffie-Hellman primitive         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $Z_s$                     | A static shared secret that is computed using the Diffie-Hellman primitive             |



### ANSI X9.63 Symbols

| [X]                | Indicates that the inclusion of the bit string or octet string <i>X</i> is optional |
|--------------------|-------------------------------------------------------------------------------------|
| a, b               | Field elements that define the equation of an elliptic curve                        |
| avf(P)             | The associate value of the elliptic curve point                                     |
| $d_{e,U}, d_{e,V}$ | Party U's and Party V's ephemeral private keys                                      |
| $d_{s,U}, d_{s,V}$ | Party U's and Party V's static private keys                                         |
| FR                 | An indication of the basis used                                                     |
| G                  | A distinguished point on an elliptic curve                                          |
| h                  | The cofactor of the elliptic curve                                                  |



### **ANSI X9.63 Symbols**

| n                  | The order of the point $G$                                                                                             |
|--------------------|------------------------------------------------------------------------------------------------------------------------|
| q                  | The field size                                                                                                         |
| j                  | A special point on an elliptic curve, called the point at infinity. The additive identity of the elliptic curve group. |
| $Q_{e,U}, Q_{e,V}$ | Party U's and Party V's ephemeral public keys                                                                          |
| $Q_{s,U}, Q_{s,V}$ | Party U's and Party V's static public keys                                                                             |
| SEED               | An optional bit string that is present if the elliptic curve was randomly generated                                    |
| $x_P$              | The <i>x</i> -coordinate of a point <i>P</i> .                                                                         |
| $y_P$              | The y-coordinate of a point P.                                                                                         |
| Z                  | A shared secret that is used to derive key using a key derivation function                                             |
| Ze                 | An ephemeral shared secret that is computed using the Diffie-Hellman primitive                                         |
| Zs                 | A static shared secret that is computed using the Diffie-Hellman primitive                                             |



#### **Key Establishment Algorithm Classes**

- ♦ Cryptographic keying material may be electronically established between parties using either key agreement or key transport schemes.
- ◆ During key agreement, the keying material to be established is not sent; information is exchanged between the parties that allow the calculation of the keying material. Key agreement schemes use asymmetric (public key) techniques.
- During key transport, encrypted keying material is sent from an initiator who generates the keying material to another party. Key transport schemes use either symmetric or public key techniques.



### **Security Attributes**

♦ To be determined...



### **Cryptographic Elements**

- Domain Parameters (Generation, Validation, and Management)
- ◆ Private/Public Keys (Generation, PK Validation, Management)
- ♦ Key Derivation Function
- ♦ Message Authentication Code
- ♦ Associate Value Function (Elliptic Curves Only)
- ♦ Cryptographic Hash Functions
- Random Number Generation
- **♦** Key Confirmation
- ◆ Calculation of Shared Secrets
- RSA Primitives (To be provided)
- ♦ Key Wrapping Primitive(s) (To be provided)



#### **Domain Parameter Generation**

- ♦ ANSI X9.42 Requirements
  - (p,q,g) where p and q are prime, and g is the generator of the q-order cyclic subgroup of GF(p)
- ♦ ANSI X9.63 Requirements
  - (q, FR, a, b, [SEED], G, n, h) where q (field size), FR (basis used), a and b (field elements),
    SEED (optional bit string), G (point), n (order of the point G), and h (cofactor).



#### **Domain Parameter Validation**

- ◆ One of three methods <u>must</u> be employed before use
  - The party generates (and checks) the parameters
  - The party validates parameters as specified in appropriate ANSI standards
  - The party receives assurance from a trusted party (e.g., a CA) that the parameters are valid by one of the above methods



### Domain Parameter Management

- ♦ Only authorized (trusted) parties should generate domain parameters
- Key pairs must be associated with their domain parameters
- ♦ Modification or substitution of domain parameters may cause security risks



#### **Private/Public Keys**

- ♦ Key Pair Generation
  - Static and ephemeral key pairs are generated using the same primitives
  - Private keys must be created using an approved RNG
- Public Key Validation
  - Static public keys must be validated by the recipient, or by an entity that is trusted by the recipient
  - Each ephemeral public key must be validated by the recipient before being used to derive a shared secret
- ♦ Key Pair Management
  - Public/private key pairs must be correctly associated with their corresponding domain parameters
  - Static public keys **must** be obtained in a trusted manner
  - Ephemeral keys must be destroyed immediately after the shared secret is computed



### **Cryptographic Elements**

- ♦ Key Derivation Function (KDF)
  - Used to derive keying material from a shared secret
  - Uses identities of communicating parties
- Message Authentication Code (MAC)
  - A function of both a symmetric key and data
  - MAC function used to provide key confirmation
- ♦ Associate Value Function (EC Only)
  - Used by the MQV family of key agreement schemes to compute an integer associated with an elliptic curve point



### **Cryptographic Elements**

- ♦ Cryptographic Hash Functions
  - Use approved hash functions whenever required.
- ◆ Random Number Generation
  - Use approved random number generators whenever required
- **♦** Key Confirmation
  - Used to provide assurance that the parties have derived the same keys



#### Calculation of Shared Secrets

- ◆ Use DH of ANSI X9.42 for dhHybrid1, dhEphem, dhHybridOneFlow, dhOneFlow, and dhStatic schemes
- ◆ Use Modified DH of ANSI X9.63 for Full Unified Model, Ephemeral Unified Model, 1-Pass Unified Model, 1-Pass Diffie-Hellman, and Static Unified Model Schemes (Differs from ANSI X9.63)



#### Calculation of Shared Secrets

- ◆ Use MQV2 primitive of ANSI X9.42 for the MQV2 scheme
- ◆ Use MQV1 primitive of ANSI X9.42 for MQV1 scheme
- ◆ Use MQV primitive of Section 5.5 of ANSI X9.63 for Full MQV and 1-Pass MQV schemes
- **♦** Shared Secrets
  - **must not** be used directly as shared keying material.
  - must be calculated by applying a key derivation function to the shared secret.



### Other Primitives

- **♦** RSA Primitives
  - To be addressed later...
- ♦ Key Wrapping Primitive(s)
  - To be addressed later...



### **Key Agreement Schemes Categories**

- **♦** C(2): Two Party Participation
  - Interactive, 2-way
  - Each party generates an ephemeral key pair.
- **♦** C(1): One Party Participation
  - Store-and-Forward, 1-way
  - Only the initiator generates an ephemeral key pair.
- **♦** C(0): Static Keys Only
  - Static (passive)
  - No ephemeral keys are used.



#### **Key Agreement Schemes Subcategories**

- ◆ C(2,2): Each party generates an ephemeral key pair and has a static key pair.
- ◆ C(2,0): Each party generates an ephemeral key pair; no static keys are used.
- ◆ C(1,2): The initiator generates an ephemeral key pair and has a static key pair; the responder has a static key pair.
- ◆ C(1,1): The initiator generates an ephemeral key pair, but has no static key pair; the responder has only a static key pair.
- $\bullet$  C(0,2): Each party has only static keys.



### Key Agreement Schemes Subcategories

- ♦ Primitive: Either a DH or an MQV primitive
- ◆ Arithmetic: Either FF as in ANSI X9.42 or EC as in ANSI X9.63
- ◆ Example: dhHybrid1 can be classified as C(2, 2, DH, FF)



### **Key Agreement Schemes**

| Category | Subcategory | Primitive | Arith. | Scheme                     | Full           |
|----------|-------------|-----------|--------|----------------------------|----------------|
|          |             |           |        |                            | Classification |
| C(2)     | C(2,2)      | DH        | FF     | dhHybrid1                  | C(2,2,DH,FF)   |
| C(2)     | C(2,2)      | DH        | EC     | Full Unified<br>Model      | C(2,2,DH,EC)   |
| C(2)     | C(2,2)      | MQV       | FF     | MQV2                       | C(2,2,MQV,FF)  |
| C(2)     | C(2,2)      | MQV       | EC     | Full MQV                   | C(2,2,MQV,EC)  |
| C(2)     | C(2,0)      | DH        | FF     | dhEphem                    | C(2,0,DH,FF)   |
| C(2)     | C(2,0)      | DH        | EC     | Ephemeral<br>Unified Model | C(2,0,DH,EC)   |
| C(1)     | C(1,2)      | DH        | FF     | dhHybridOneFlow            | C(1,2,DH,FF)   |
| C(1)     | C(1,2)      | DH        | EC     | 1-Pass Unified<br>Model    | C(1,2,DH,EC)   |
| C(1)     | C(1,2)      | MQV       | FF     | MQV1                       | C(1,2,MQV,FF)  |
| C(1)     | C(1,2)      | MQV       | EC     | 1-Pass MQV                 | C(1,2,MQV,EC)  |
| C(1)     | C(1,1)      | DH        | FF     | dhOneFlow                  | C(1,1,DH,FF)   |
| C(1)     | C(1,1)      | DH        | EC     | 1-Pass Diffie-<br>Hellman  | C(1,1,DH,EC)   |
| C(0)     | C(0,2)      | DH        | FF     | dhStatic                   | C(0,2,DH,FF)   |
| C(0)     | C(0,2)      | DH        | EC     | Static Unified<br>Model    | C(0,2,DH,EC)   |



### **Key Agreement Schemes Overview**

- ◆ Each party in a key agreement process **must** use the same domain parameters.
- ◆ These parameters must be established prior to the initiation of the key agreement process.
- ◆ Static public keys may be obtained from other entity or trusted third party (e.g., a CA)



### **Two Party Participation C(2)**

- ◆ Each party generates an ephemeral key pair and has a static key pair
- $\bullet$  Four C(2,2) schemes
  - dhHybrid1
  - Full Unified Model
  - -MQV2
  - -Full MQV



# Figure 1: General Protocol when each party has both static and ephemeral key pairs



- U uses its static and ephemeral private keys and V's static and ephemeral public keys to compute a shared secret.
- 2. U invokes the Key Derivation Function using the shared secret.
- V uses its static and ephemeral private keys and U's static and ephemeral public keys to compute a shared secret.
- 2. V invokes the Key Derivation Function using the shared secret.



# Table 4: dhHybrid1 Key Agreement Scheme C(2,2,DH,FF)

|                | Party U                         | Party V                                             |
|----------------|---------------------------------|-----------------------------------------------------|
| Static Data    | 1. Static private key $x_U$     | 1. Static private key $x_V$                         |
|                | 2. Static public key $y_U$      | 2. Static public key $y_v$                          |
| Ephemeral Data | 1. Ephemeral private key $r_U$  | 1. Ephemeral private key $r_V$                      |
|                | 2. Ephemeral public key $t_U$   | 2. Ephemeral public key $t_V$                       |
| Input          | $(p, q, g), x_U, y_V, r_U, t_V$ | $(p, q, g), x_{v}, y_{U}, r_{v}, t_{U}$             |
| Computation    | $Z_s = y_V^{x_U} \bmod p$       | $Z_s = y_U^{x_V} \bmod p$ $Z_e = t_U^{x_V} \bmod p$ |
|                | $Z_e = t_v^{r_U} \bmod p$       | $Z_{e} = t_{U}^{r_{V}} \bmod p$                     |
|                |                                 |                                                     |
| Derive Key     | Compute kdf(Z,OtherInput) using | Compute kdf(Z,OtherInput) using                     |
| Material       | $Z = Z_e /\!/ Z_s$              | $Z = Z_e /\!\!/ Z_s$                                |



# **Table 5: Full Unified Model Key Agreement Scheme C(2,2,DH,EC)**

|                | Party U                                                                               | Party V                                                                               |
|----------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Static Data    | 1. Static private key $d_{s,U}$                                                       | 1. Static private key $d_{s,v}$                                                       |
|                | 2. Static public key $Q_{s,U}$                                                        | 2. Static public key $Q_{s,v}$                                                        |
| Ephemeral Data | 1. Ephemeral private key $d_{e,U}$                                                    | 1. Ephemeral private key $d_{e,v}$                                                    |
|                | 2. Ephemeral public key $Q_{e,U}$                                                     | 2. Ephemeral public key $Q_{e,v}$                                                     |
| Input          | (q, FR a, b, [SEED], G, n, h),<br>$d_{e,U}, Q_{e,V}, d_{s,U}, Q_{s,V}$                | (q, FR, a, b, [SEED] G, n, h),<br>$d_{\sigma V}, Q_{e,U}, d_{\sigma V}, Q_{s,U}$      |
| Computation    | $(x_s, y_s) = hd_{s,U}Q_{s,V}$ $(x_e, y_e) = hd_{e,U}Q_{e,V}$ $Z_s = x_s$ $Z_e = x_e$ | $(x_s, y_s) = hd_{s,V}Q_{s,U}$ $(x_c, y_e) = hd_{e,V}Q_{e,U}$ $Z_s = x_s$ $Z_e = x_e$ |
| Derive Keying  | Compute kdf(Z,OtherInput) using                                                       | Compute kdf(Z,OtherInput) using                                                       |
| Material       | $Z=Z_e \parallel Z_s$                                                                 | $Z=Z_e  Z_s$                                                                          |



### Table 6: MQV2 Key Agreement Scheme C(2,2,MQV,FF)

|                | Party U                                                        | Party V                                       |
|----------------|----------------------------------------------------------------|-----------------------------------------------|
| Static Data    | 1. Static private key x <sub>U</sub>                           | 1. Static private key x <sub>v</sub>          |
|                | 2. Static public key $y_U$                                     | 2. Static public key $y_v$                    |
| Ephemeral Data | 1. Ephemeral private key $r_{\scriptscriptstyle U}$            | 1. Ephemeral private key $r_v$                |
|                | 2. Ephemeral public key $t_U$                                  | 2. Ephemeral public key $t_v$                 |
| Input          | $(p, q, g), x_U, y_V, r_U, t_U, t_V$                           | $(p, q, g), x_v, y_u, r_v, t_v, t_u$          |
| Computation    | 1. $w = \lceil   q  /2 \rceil$                                 | $1.  w = \lceil   q  /2 \rceil$               |
|                | $2.  t_U \mathbf{c} = (t_U \bmod 2^w) + 2^w$                   | $2.  t_V \mathbf{c} = (t_V \bmod 2^w) + 2^w$  |
|                | $3.  S_U = (r_U + t_U \mathbf{c} x_U) \bmod q$                 | $3. S_v$                                      |
|                | $4.  t_V \mathbf{c} = (t_V \bmod 2^w) + 2^w$                   |                                               |
|                | $5. Z_{MQV} = \left(t_{V} y_{V}^{t_{V}}\right)^{S_{U}} \mod p$ | $Z_{MQV} = \left(t_U y_U^{t'}\right) \mod p.$ |
| Derive Keying  | Compute kdf(Z,OtherInput) using                                | Compute kdf(Z,OtherInput) using               |
| Material       | $Z = Z_{MQV}$                                                  | $Z = Z_{MQV}$                                 |



# Table 7: Full MQV Key Agreement Scheme C(2,2,MQV,EC)

|                | Party U                                                | Party V                                                |
|----------------|--------------------------------------------------------|--------------------------------------------------------|
| Static Data    | 1. Static private key $d_{s,U}$                        | 1. Static private key $d_{s,v}$                        |
|                | 2. Static public key $Q_{s,U}$                         | 2. Static public key $Q_{s,v}$                         |
| Ephemeral Data | 1. Ephemeral private key $d_{e,U}$                     | 1. Ephemeral private key $d_{e,v}$                     |
|                | 2. Ephemeral public key $Q_{e,U}$                      | 2. Ephemeral public key $Q_{e,v}$                      |
| Input          | (q, FR a, b, [SEED], G, n, h),                         | (q, FR, a, b, [SEED] G, n, h),                         |
|                | $d_{e,U}, Q_{e,V}, d_{s,U}, Q_{e,U}, Q_{s,V}$          | $d_{e,v}, Q_{e,U}, d_{s,v}, Q_{e,v}, Q_{s,U}$          |
| Computation    | 1. $implicitsig_U = (d_{e,U} +$                        | 1. $implicitsig_V = (d_{e,V} +$                        |
|                | $avf(Q_{e,U})d_{s,U}) \bmod n$                         | $avf(Q_{e,v})d_{s,v}) \bmod n$                         |
|                | 2. $(x, y) = h \times implicitsig_U \times (Q_{e,V} +$ | 2. $(x, y) = h \times implicitsig_V \times (Q_{e,U} +$ |
|                | $avf(Q_{e,v})Q_{s,v})$                                 | $avf(Q_{e,U})Q_{s,U})$                                 |
|                | 3. Z=x                                                 | 3.  Z = x                                              |
| Derive Keying  | Compute kdf(Z,OtherInput) using                        | Compute kdf(Z,OtherInput) using                        |
| Material       | Z = x                                                  | Z = x                                                  |



### **Two Party Participation**

- ◆ Each party generates an ephemeral key pair; no static keys are used.
- ♦ Two C(2,0) schemes
  - -dhEphem
  - Ephemeral Unified Model



Figure 2: General protocol when each party generates ephemeral key pairs; no static keys are used



- 1. U uses its ephemeral private key and V's ephemeral public key to form a shared secret.
- 2. U invokes the Key Derivation Function using the shared secret.
- 1. V uses its ephemeral private key and U's ephemeral public key to form a shared secret.
- 2. V invokes the Key Derivation Function using the shared secret.



## Table 8: dhEphem Key Agreement Scheme C(2,0,DH,FF)

|                           | Party U                                   | Party V                                   |
|---------------------------|-------------------------------------------|-------------------------------------------|
| Static Data               | NA                                        | NA                                        |
| Ephemeral Data            | 1. Ephemeral private key $r_U$            | 1. Ephemeral private key $r_V$            |
|                           | 2. Ephemeral public key $t_U$             | 2. Ephemeral public key $t_V$             |
| Input                     | $(p,q,g), r_U, t_V$                       | $(p,q,g),r_{v},t_{U}$                     |
| Computation               | $Z_e = t_V^{r_U} \mod p$                  | $Z_e = t_U^{r_V} \bmod p$                 |
| Derive Keying<br>Material | Compute $kdf(Z,OtherInput)$ using $Z=Z_e$ | Compute $kdf(Z,OtherInput)$ using $Z=Z_e$ |



### **Table 9: Ephemeral Unified Model Key Agreement Scheme C(2,0,DH,EC)**

|                           | Party U                                             | Party V                                             |
|---------------------------|-----------------------------------------------------|-----------------------------------------------------|
| Static Data               | NA                                                  | NA                                                  |
| Ephemeral Data            | 1. Ephemeral private key $d_{e,U}$                  | 1. Ephemeral private key $d_{e,v}$                  |
|                           | 2. Ephemeral public key $Q_{e,U}$                   | 2. Ephemeral public key $Q_{e,v}$                   |
| Input                     | (q, FR a, b, [SFED], G, n, h),<br>$d_{e,U} Q_{e,V}$ | (q, FR, a, b, [SEED] G, n, h),<br>$d_{es}, Q_{e,U}$ |
| Computation               | $(x_o, y_e) = hd_{e,l}Q_{e,V}$ $Z_e = x_e$          | $(x_o, y_e) = hd_{e,V}Q_{e,U}$ $Z_e = x_e$          |
| Derive Keying<br>Material | Compute $kdf(ZOtherInput)$ using $Z=Z_e$            | Compute $kdf(ZOtherImput)$ using $Z=Z_e$            |



### **One Party Participation**

- ◆ Initiator has a static key pair and generates an ephemeral key pair; Responder has a static key pair.
- $\bullet$  Four C(1,2) schemes
  - dhHybridOneFlow
  - 1-Pass Unified Model
  - -MQV1
  - -1-Pass MVQ



Figure 3: General protocol when the Initiator has both static and ephemeral key pairs, and the Responder has only a static key pair



- U uses its static and ephemeral private keys and V's static public key to form a shared secret
- 2. U invokes the Key Derivation Function using the shared secret
- 1. V uses its static private key and U's static and ephemeral public key to form a shared secret
- 2. V invokes the Key Derivation Function using the shared secret



### Table 10: dhHybridOneFlow Key Agreement Scheme C(1,2,DH,FF)

|                | Party U                         | Party V                         |
|----------------|---------------------------------|---------------------------------|
| Static Data    | 1. Static private key $x_U$     | 1. Static private key $x_v$     |
|                | 2. Static public key $y_U$      | 2. Static public key $y_v$      |
| Ephemeral Data | 1. Ephemeral private key $r_U$  | N/A                             |
|                | 2. Ephemeral public key $t_U$   |                                 |
| Input          | $(p,q,g), x_U, r_U, y_V$        | $(p,q,g), x_V, y_U, t_U$        |
|                |                                 |                                 |
| Computation    | $Z_s = y_V^{s_U} \bmod p$       | $Z_s = y_U^{x_V} \bmod p$       |
|                | $Z_{e} = y_{V}^{r_{U}} \bmod p$ | $Z_{e} = t_{U}^{x_{V}} \bmod p$ |
|                |                                 |                                 |
| Derive Keying  | Compute kdf(Z,OtherInput) using | Compute kdf(Z,OtherInput) using |
| Material       | $Z = Z_e // Z_s$                | $Z = Z_e / / Z_s$               |



## **Table 11: 1-Pass Unified Model Key Agreement Scheme C(1,2,DH,EC)**

|                | 1                                                                                         | 1                                                                                                  |
|----------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|                | Party U                                                                                   | Party V                                                                                            |
| Static Data    | 1. Static private key $d_{s,u}$                                                           | 1. Static private key $d_{s,v}$                                                                    |
|                | 2. Static public key $Q_{s,U}$                                                            | 2. Static public key $Q_{s,v}$                                                                     |
| Ephemeral Data | 1. Ephemeral private key $d_{e,U}$                                                        | N/A                                                                                                |
|                | 2. Ephemeral public key $Q_{e,U}$                                                         |                                                                                                    |
| Input          | $(q, FR, a, b, [SEED], G, n, h), d_{s,U},$<br>$d_{e,U}, Q_{s,V}$                          | $(q, FR, a, b, [SEED], G, n, h), d_{s,v},$<br>$Q_{s,U}, Q_{e,U}$                                   |
| Computation    | $(x_s, y_s) = h d_{s,U} Q_{s,V}$ $(x_e, y_e) = h d_{e,U} Q_{s,V}$ $Z_s = x_s$ $Z_e = x_e$ | $(x_s, y_s) = h d_{s,V} Q_{s,U}$<br>$(x_e, y_e) = h d_{s,V} Q_{e,U}$<br>$Z_s = x_s$<br>$Z_e = x_e$ |
| Derive Keying  | Compute kdf(Z,OtherInput) using                                                           | Compute kdf(Z,OtherInput) using                                                                    |
| Material       | $Z = Z_e // Z_s$                                                                          | $Z = Z_e // Z_s$                                                                                   |



### Table 12: MQV1 Key Agreement Scheme C(1,2,MQV,FF)

|                           | Party U                                                   | Party V                                                                 |
|---------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------|
| Static Data               | 1. Static private key $x_U$                               | 1. Static private key $x_v$                                             |
|                           | 2. Static public key $y_U$                                | 2. Static public key $y_v$                                              |
| Ephemeral Data            | 1. Ephemeral private key $r_{\scriptscriptstyle U}$       | N/A                                                                     |
|                           | 2. Ephemeral public key $t_U$                             |                                                                         |
| Input                     | $(p, q, g), x_{U}, y_{V}, r_{U}, t_{U}$                   | $(p, q, g), x_v, y_v, t_v$                                              |
| Computation               | $1.  w = \lceil \ q\ /2 \rceil$                           | $1.  w = \lceil \ q\ /2 \rceil$                                         |
|                           | 2. $t_U' = (t_U \mod 2^w) + 2^w$                          | 2. $y_v c = (y_v \mod 2^w) + 2^w$                                       |
|                           | $3.  S_U = (r_U + t_U' x_U) \bmod q$                      | 3. $S_v = (x_v + y_v \mathbf{\hat{\alpha}}_v) \mod q$                   |
|                           | 4. $y_v' = (y_v \mod 2^w) + 2^w$                          | 4. $t_U' = (t_U \mod 2^w) + 2^w$                                        |
|                           | $5.  Z_{MQV} = \left( y_v y_v^{y_v} \right)^{s_v} \mod p$ | $5.  Z_{MQV} = \left(t_{U} y_{U}^{t_{U}^{-}}\right)^{s_{V}} mo \ d \ p$ |
| Derive Keying<br>Material | Compute $kdf(Z,OtherInput)$ using $Z = Z_{MOV}$           | Compute $kdf(Z, OtherInput)$ using $Z = Z_{MQV}$                        |



### Table 13:1-Pass MQV Model Key Agreement Scheme C(1,2,MQV,EC)

|                | Party U                                                                      | Party V                                                                      |
|----------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Static Data    | 1. Static private key $d_{s,U}$                                              | 1. Static private key $d_{s,v}$                                              |
|                | 2. Static public key $Q_{s,U}$                                               | 2. Static public key $Q_{s,\nu}$                                             |
| Ephemeral Data | 1. Ephemeral private key $d_{e,U}$                                           | N/A                                                                          |
|                | 2. Ephemeral public key $Q_{e,U}$                                            |                                                                              |
| Input          | $(q, FR, a, b, [SEED], G, n, h), d_{e,U}, d_{s,U}, Q_{e,U}, Q_{s,V}$         | $(q, FR, a, b, [SEED], G, n, h), d_{s,v},$<br>$Q_{s,v}, Q_{e,v}, Q_{s,v}$    |
| Computation    | 1. $implicitsig_U = (d_{e,U} + avf(Q_{e,U})d_{s,U}) \mod n$                  | 1. $implicitsig_V = (d_{s,V} + avf(Q_{s,V})d_{s,V}) \bmod n$                 |
|                | 2. $(x, y) = h \times implicitsig_U \times (Q_{s,v} + avf(Q_{s,v}) Q_{s,v})$ | 2. $(x, y) = h \times implicitsig_V \times (Q_{e,U} + avf(Q_{e,U}) Q_{s,U})$ |
|                | 3.  Z = x                                                                    | 3.  Z = x                                                                    |
| Derive Keying  | Compute kdf(Z,OtherInput) using                                              | Compute kdf(Z,OtherInput) using                                              |
| Material       | Z = x                                                                        | Z = x                                                                        |



### **One Party Participation**

- ◆ Initiator generates only an ephemeral key pair; Responder has only a static key pair.
- ◆ Two C(1,1) schemes
  - dhOneFlow
  - 1-Pass Diffie-Hellman



# Figure 4: General protocol when the Initiator has only an ephemeral key pair, and the Responder has only a static key pair



- U uses its ephemeral private key and V's static public key to form a shared secret
- 2. U invokes the Key Derivation Function using the shared secret
- V uses its static private key and
   U's ephemeral public key to form
   a shared secret
- 2. V invokes the Key Derivation Function using the shared secret



# Table 14: dhOneFlow Key Agreement Scheme C(1,1,DH,FF)

|                           | Party U                                     | Party V                                                         |
|---------------------------|---------------------------------------------|-----------------------------------------------------------------|
| Static Data               | N/A                                         | 1. Static private key $x_V$                                     |
|                           |                                             | 2. Static public key $y_V$                                      |
| Ephemeral Data            | 1. Ephemeral private key $r_U$              | N/A                                                             |
|                           | 2. Ephemeral public key $t_U$               |                                                                 |
| Input                     | $(p, q, g), r_{U}, y_{V}$                   | $(p, q, g), x_{\scriptscriptstyle W}, t_{\scriptscriptstyle U}$ |
| Computation               | $Z_e = y_v^{v_U} \bmod p$                   | $Z_e = t_U^{w} \bmod p$                                         |
| Derive Keying<br>Material | Compute $kdf(Z,OtherInput)$ using $Z = Z_e$ | Compute $kdf(Z,OtherInput)$ using $Z = Z_e$                     |



### **Table 15: 1-Pass Diffie-Hellman Model Key Agreement Scheme C(1,1,DH,EC)**

|                | Party U                                   | Party V                                   |
|----------------|-------------------------------------------|-------------------------------------------|
| Static Data    | NA                                        | 1. Static private key $d_{s,v}$           |
|                |                                           | 2 (4-4                                    |
|                |                                           | 2. Static public key $Q_{s,v}$            |
| Ephemeral Data | 1. Ephemeral private key $d_{e,U}$        | NA                                        |
|                | 2 7 1 1 1 1 2                             |                                           |
|                | 2. Ephemeral public key $Q_{e,U}$         |                                           |
|                |                                           |                                           |
| Input          | $(q, FR, a, b, [SEED], G, n, h), d_{e,v}$ | $(q, FR, a, b, [SEED], G, n, h), d_{sv},$ |
|                | $Q_{s,v}$                                 | $Q_{e,U}$                                 |
| Computation    | $(x, y) = h d_{e,U} Q_{s,V}$              | $(x, y) = h d_{s,v} Q_{e,U}$              |
|                |                                           |                                           |
|                | Z=x                                       | Z=x                                       |
|                |                                           |                                           |
| Derive Keying  | Compute kdf(ZOtherInput) using            | Compute kdf(Z,OtherInput) using           |
| Material       | Z=x                                       | Z=x                                       |



### **Static Keys Only**

- ◆ Each party has only a static key pair
- ◆ Two C(0,2) schemes
  - -dhStatic
  - -Static Unified Model



# Figure 5: Each party has only a static key pair



- 1. U uses its static private key and V's static public key to form a shared secret
- 2. U invokes the Key Derivation Function using the shared secret
- 1. V uses its static private key and U's static public key to form a shared secret
- 2. U invokes the Key Derivation Function using the shared secret



# Table 16: dhStatic Key Agreement Scheme C(0,2,DH,FF)

|               | Party U                                               | Party V                                               |
|---------------|-------------------------------------------------------|-------------------------------------------------------|
| Static Data   | 1. Static private key $x_U$                           | 1. Static private key $x_V$                           |
|               | 2. Static public key $y_U$                            | 2. Static public key $y_V$                            |
| Epheneral     | NA                                                    | N/A                                                   |
| Data          |                                                       |                                                       |
| Input         | $(p, q, g), x_{o}, y_{v}$                             | $(p, q, g), x_{\psi} y_{U}$                           |
| Computation   | $Z_s = y_v^{x_v} \operatorname{mo} \boldsymbol{\phi}$ | $Z_s = y_U^{v_V} \operatorname{mo} \boldsymbol{\phi}$ |
| Derive Keying | Compute kdf(Z,OtherInput) using                       | Compute kdf(ZOtherInput) using                        |
| Material      | $Z=Z_s$                                               | $Z=Z_s$                                               |



## **Table 17: Static Unified Model Key Agreement Scheme C(0,2,DH,EC)**

|                           | Party U                                              | Party V                                                |
|---------------------------|------------------------------------------------------|--------------------------------------------------------|
| Static Data               | 1. Static private key $d_{s,U}$                      | 1. Static private key $d_{s,v}$                        |
|                           | 2. Static public key $Q_{s,U}$                       | 2. Static public key $Q_{s,v}$                         |
| Ephemeral Data            | N/A                                                  | N/A                                                    |
| Input                     | $(q, FR, a, b, [SEED], G, n, h), d_{s,t},$ $Q_{s,v}$ | $(q, FR, a, b, [SEED], G, n, h), d_{s,v}$<br>$Q_{s,v}$ |
| Computation               | $(x_s, y_s) = hd_{s,t}Q_{s,t}$ $Z_s = x_s$           | $(x_s, y_s) = hd_{s,v}Q_{s,v}$ $Z_s = x_s$             |
| Derive Keying<br>Material | Compute $kdf(Z,OtherInput)$ using $Z = Z_s$          | Compute $kdf(Z,OtherInput)$ using $Z = Z_s$            |



### **Topics to be Addressed**

- ♦ Key Transport
  - To be addressed
- ♦ Keys Derived from a "Master Key"
  - Suggestions welcome



### **Key Recovery**

- ◆ Some applications may desire to recover protected data by first recovering the associated key
- ◆ Static key pairs may be saved (See Key Management Guideline document)
- ◆ Static public keys may be saved (e.g., public key certificates)
- ♦ Ephemeral public keys may be saved
- ◆ Ephemeral private keys must not be recoverable or saved



### Implementation Validation

- ◆ Implementations of schemes in the final schemes document must be tested in order to claim compliance
- ◆ For information on NIST's testing program see http://csrc.nist.gov/cryptval



### Questions?





#### Give me a break!





### **Discussion Topics**

- ◆ Are there any situations which are not addressed by at least one of the schemes in the document?
- Which schemes should use key confirmation?
- Should key confirmation ever be mandatory?
- ◆ Does it unnecessarily hinder any application to require a distinction between initiator and responder in a scheme?
- ◆ Should the identities of the initiator and responder be used in the calculation of shared secrets? (related to previous question)



### **Discussion Topics**

- ◆ Should this document address broader forms of key derivation (e.g., key derivation for multi-user applications)?
- ◆ What are the most important key establishment scheme attributes, and how should they be presented? (Please bring your ideas)
- ◆ Are there any additional topics that should be covered?
- ◆ Are there any additional appendices that should be included?



### Questions or Discussion?





### Closing

- ♦ Thanks for coming and helping
- ♦ See <a href="http://www.nist.gov/kms">http://www.nist.gov/kms</a>
- ♦ We will let you know when report is posted
- ♦ Send comments to <a href="mailto:kmscomments@nist.gov">kmscomments@nist.gov</a>
- ♦ Have a safe trip home